Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer-treatment-induced neurotoxicity—focus on newer treatments

Key Points

  • Cancer treatments are associated with substantial neurotoxicity, which is a diagnosis of exclusion

  • Treatments affect both the central and peripheral nervous systems

  • Biological and immunological therapies have different mechanisms of toxicity

  • Recognition of neurotoxicity is important to prevent further neurological injury and to distinguish this toxicity from nervous system involvement of cancer

Abstract

Neurotoxicity caused by traditional chemotherapy and radiotherapy is widely recognized in patients with cancer. The adverse effects of newer therapeutics, such as biological and immunotherapeutic agents, are less well established, and are associated with considerable neurotoxicity in the central and peripheral nervous systems. This Review addresses the main neurotoxicities of cancer treatment with a focus on the newer therapeutics. Recognition of these patterns of toxicity is important because drug discontinuation or dose adjustment might prevent further neurological injury. Knowledge of these toxicities also helps to differentiate treatment-related symptoms from progression of cancer or its involvement of the nervous system. Familiarity with the neurological syndromes associated with cancer treatments enables clinicians to use the appropriate treatment for the underlying malignancy while minimizing the risk of neurological damage, which might preserve patients' quality of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leukoencephalopathy.
Figure 2: Posterior reversible encephalopathy syndrome.
Figure 3: Radiation-induced cavernomas.

Similar content being viewed by others

References

  1. DeAngelis, L. M. & Posner, J. B. Neurologic Complications of Cancer 2nd edn. (Oxford University Press, 2008).

    Book  Google Scholar 

  2. Argyriou, A. A., Bruna, J., Marmiroli, P. & Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit. Rev. Oncol. Hematol. 82, 51–77 (2012).

    Article  PubMed  Google Scholar 

  3. Roman, D. D. & Sperduto, P. W. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int. J. Radiat. Oncol. Biol. Phys. 31, 983–998 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Letarte, N., Bressler, L. R. & Villano, J. L. Bevacizumab and central nervous system (CNS) hemorrhage. Cancer Chemother. Pharmacol. 71, 1561–1565 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Bot., I., Blank, C. U., Boogerd, W. & Brandsma, D. Neurological immune-related adverse events of ipilimumab. Pract. Neurol. 13, 278–280 (2013).

    Article  PubMed  Google Scholar 

  6. Magge, R. S. & DeAngelis, L. M. The double-edged sword: neurotoxicity of chemotherapy. Blood Rev. 29, 93–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Soffietti, R., Trevisan, E. & Ruda, R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb. Clin. Neurol. 121, 1199–1218 (2014).

    Article  PubMed  Google Scholar 

  8. Plotkin, S. R. & Wen, P. Y. Neurologic complications of cancer therapy. Neurol. Clin. 21, 279–318 (2003).

    Article  PubMed  Google Scholar 

  9. Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Greene-Schloesser, D. et al. Radiation-induced brain injury: a review. Front. Oncol. 2, 73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogers, L. R. Neurologic complications of radiation. Continuum (Minneap. Minn.) 18, 343–354 (2012).

    Google Scholar 

  12. Kimby, E. Tolerability and safety of rituximab (MabThera). Cancer Treat. Rev. 31, 456–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Baselga, J. et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J. Clin. Oncol. 23, 2162–2171 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dillman, R. O. Infusion reactions associated with the therapeutic use of monoclonal antibodies in the treatment of malignancy. Cancer Metastasis Rev. 18, 465–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Goldenberg, M. M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. 21, 309–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. van Rooij, F. G., Dorresteijn, L. D., Van Bokhoven, M. M. & Verstappen, C. C. A throbbing pain in the head: trastuzumab-induced migraine. Anticancer Res. 29, 4223–4225 (2009).

    CAS  PubMed  Google Scholar 

  17. Pfeiffer, P. et al. Cetuximab and irinotecan as third line therapy in patients with advanced colorectal cancer after failure of irinotecan, oxaliplatin and 5-fluorouracil. Acta Oncol. 46, 697–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davila, M. L. et al. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. Int. J. Hematol. 99, 361–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Meyers, C. A., Scheibel, R. S. & Forman, A. D. Persistent neurotoxicity of systemically administered interferon-α. Neurology 41, 672–676 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Biesma, B. et al. Effects of interleukin-3 after chemotherapy for advanced ovarian cancer. Blood 80, 1141–1148 (1992).

    CAS  PubMed  Google Scholar 

  22. Jolles, S., Sewell, W. A. & Leighton, C. Drug-induced aseptic meningitis: diagnosis and management. Drug Saf. 22, 215–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Verstappen, C. C., Heimans, J. J., Hoekman, K. & Postma, T. J. Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63, 1549–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Jaeckle, K. A. et al. An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J. Neurooncol. 57, 231–239 (2002).

    Article  PubMed  Google Scholar 

  25. Slater, L. M., Wainer, R. A. & Serpick, A. A. Vincristine neurotoxicity with hyponatremia. Cancer 23, 122–125 (1969).

    Article  CAS  PubMed  Google Scholar 

  26. Kwong, Y. L., Yeung, D. Y. & Chan, J. C. Intrathecal chemotherapy for hematologic malignancies: drugs and toxicities. Ann. Hematol. 88, 193–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Sul, J. K. & Deangelis, L. M. Neurologic complications of cancer chemotherapy. Semin. Oncol. 33, 324–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, E. Q., Arrillaga-Romany, I. C. & Wen, P. Y. Neurologic complications of cancer drug therapies. Continuum (Minneap. Minn.) 18, 355–365 (2012).

    Google Scholar 

  29. Maude, S. L., Teachey, D. T., Porter, D. L. & Grupp, S. A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125, 4017–4023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davila, M. L. et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rohatiner, A. Z. et al. Central nervous system toxicity of interferon. Br. J. Cancer 47, 419–422 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sioka, C. & Kyritsis, A. P. Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother. Pharmacol. 63, 761–767 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Denicoff, K. D. et al. The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann. Intern. Med. 107, 293–300 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, Y. W., Cho, H. J., Lee, W. H. & Sonntag, W. E. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol. Ther. (Seoul) 20, 357–370 (2012).

    Article  CAS  Google Scholar 

  35. [No authors listed] Chemotherapy of metastatic colorectal cancer. Prescrire Int. 19, 219–224 (2010).

  36. Ryan, J. Radiation somnolence syndrome. J. Pediatr. Oncol. Nurs. 17, 50–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Dietrich, J., Monje, M., Wefel, J. & Meyers, C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13, 1285–1295 (2008).

    Article  PubMed  Google Scholar 

  38. Matsubayashi, J., Tsuchiya, K., Matsunaga, T. & Mukai, K. Methotrexate-related leukoencephalopathy without radiation therapy: distribution of brain lesions and pathological heterogeneity on two autopsy cases. Neuropathology 29, 105–115 (2009).

    Article  PubMed  Google Scholar 

  39. Myers, J. S. Chemotherapy-related cognitive impairment. Clin. J. Oncol. Nurs. 13, 413–421 (2009).

    Article  PubMed  Google Scholar 

  40. Tipples, K., Kolluri, R. B. & Raouf, S. Encephalopathy secondary to capecitabine chemotherapy: a case report and discussion. J. Oncol. Pharm. Pract. 15, 237–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Waber, D. P. et al. Neuropsychological outcomes from a randomized trial of triple intrathecal chemotherapy compared with 18 Gy cranial radiation as CNS treatment in acute lymphoblastic leukemia: findings from Dana-Farber Cancer Institute ALL Consortium Protocol 95–01. J. Clin. Oncol. 25, 4914–4921 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Warrington, J. P. et al. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J. Vasc. Res. 50, 445–457 (2013).

    Article  PubMed  Google Scholar 

  43. Monje, M. L. & Palmer, T. Radiation injury and neurogenesis. Curr. Opin. Neurol. 16, 129–134 (2003).

    Article  PubMed  Google Scholar 

  44. Christie, L. A. et al. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin. Cancer Res. 18, 1954–1965 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Monje, M. & Dietrich, J. Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav. Brain Res. 227, 376–379 (2012).

    Article  PubMed  Google Scholar 

  46. Myers, J. S. The possible role of cytokines in chemotherapy-induced cognitive deficits. Adv. Exp. Med. Biol. 678, 119–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Monje, M. Cranial radiation therapy and damage to hippocampal neurogenesis. Dev. Disabil. Res. Rev. 14, 238–242 (2008).

    Article  PubMed  Google Scholar 

  48. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Gondi, V. et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J. Clin. Oncol. 32, 3810–3816 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Radiation Therapy Oncology Group. RTOG 0933 Protocol Information [online], (2012).

  51. Han, R. et al. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol. 7, 12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Panagiotakos, G. et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS ONE 2, e588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sierra, A., Laitinen, T., Grohn, O. & Pitkanen, A. Diffusion tensor imaging of hippocampal network plasticity. Brain Struct. Funct. 220, 781–801 (2015).

    Article  PubMed  Google Scholar 

  54. Berger, J. R. Progressive multifocal leukoencephalopathy. Curr. Neurol. Neurosci. Rep. 7, 461–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Vidarsson, B., Mosher, D. F., Salamat, M. S., Isaksson, H. J. & Onundarson, P. T. Progressive multifocal leukoencephalopathy after fludarabine therapy for low-grade lymphoproliferative disease. Am. J. Hematol. 70, 51–54 (2002).

    Article  PubMed  Google Scholar 

  56. Carson, K. R. et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113, 4834–4840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Isidoro, L., Pires, P., Rito, L. & Cordeiro, G. Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2013-201781 (2014).

  58. Carson, K. R. et al. Progressive multifocal leukoencephalopathy associated with brentuximab vedotin therapy: a report of 5 cases from the Southern Network on Adverse Reactions (SONAR) project. Cancer 120, 2464–2471 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Strandgaard, S. & Paulson, O. B. Cerebral autoregulation. Stroke 15, 413–416 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Savvidou, M. D. et al. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet 361, 1511–1517 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Marra, A. et al. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med. Hypotheses 82, 619–622 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Lamy, C., Oppenheim, C. & Mas, J. L. Posterior reversible encephalopathy syndrome. Handb. Clin. Neurol. 121, 1687–1701 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Bhatt, A., Farooq, M. U., Majid, A. & Kassab, M. Chemotherapy-related posterior reversible leukoencephalopathy syndrome. Nat. Clin. Pract. Neurol. 5, 163–169 (2009).

    CAS  PubMed  Google Scholar 

  64. Glusker, P., Recht, L. & Lane, B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Grisold, W., Oberndorfer, S. & Struhal, W. Stroke and cancer: a review. Acta Neurol. Scand. 119, 1–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Li, S. H. et al. Incidence of ischemic stroke post-chemotherapy: a retrospective review of 10,963 patients. Clin. Neurol. Neurosurg. 108, 150–156 (2006).

    Article  PubMed  Google Scholar 

  67. Rogers, L. R. Cerebrovascular complications in patients with cancer. Semin. Neurol. 24, 453–460 (2004).

    Article  PubMed  Google Scholar 

  68. Rollins, N., Winick, N., Bash, R. & Booth, T. Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR Am. J. Neuroradiol. 25, 1688–1695 (2004).

    PubMed  PubMed Central  Google Scholar 

  69. Hodi, F. S. et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2, 632–642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haykin, M. E., Gorman, M., van Hoff, J., Fulbright, R. K. & Baehring, J. M. Diffusion-weighted MRI correlates of subacute methotrexate-related neurotoxicity. J. Neurooncol. 76, 153–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Wani, N. A., Kosar, T., Pala, N. A. & Qureshi, U. A. Sagittal sinus thrombosis due to L-asparaginase. J. Pediatr. Neurosci. 5, 32–35 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Elice, F., Rodeghiero, F., Falanga, A. & Rickles, F. R. Thrombosis associated with angiogenesis inhibitors. Best Pract. Res. Clin. Haematol. 22, 115–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Odia, Y., Shih, J. H., Kreisl, T. N. & Fine, H. A. Bevacizumab-related toxicities in the National Cancer Institute malignant glioma trial cohort. J. Neurooncol. 120, 431–440 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Schutz, F. A., Je, Y., Azzi, G. R., Nguyen, P. L. & Choueiri, T. K. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Ann. Oncol. 22, 1404–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. O'Connor, M. M. & Mayberg, M. R. Effects of radiation on cerebral vasculature: a review. Neurosurgery 46, 138–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Di Giannatale, A. et al. Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J. Neurooncol. 117, 311–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Ferroli, P. et al. Cerebral cavernomas and seizures: a retrospective study on 163 patients who underwent pure lesionectomy. Neurol. Sci. 26, 390–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Baker, W. J., Royer, G. L. Jr & Weiss, R. B. Cytarabine and neurologic toxicity. J. Clin. Oncol. 9, 679–693 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Herzig, R. H. et al. Cerebellar toxicity with high-dose cytosine arabinoside. J. Clin. Oncol. 5, 927–932 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Dworkin, L. A., Goldman, R. D., Zivin, L. S. & Fuchs, P. C. Cerebellar toxicity following high-dose cytosine arabinoside. J. Clin. Oncol. 3, 613–616 (1985).

    Article  CAS  PubMed  Google Scholar 

  81. Land, S. R. et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J. Clin. Oncol. 25, 2205–2211 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. DiPalma, J. R. Metoclopramide: a dopamine receptor antagonist. Am. Fam. Physician 41, 919–924 (1990).

    CAS  PubMed  Google Scholar 

  83. Rao, A. S. & Camilleri, M. Review article: metoclopramide and tardive dyskinesia. Aliment. Pharmacol. Ther. 31, 11–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Fink, J., Born, D. & Chamberlain, M. C. Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr. Neurol. Neurosci. Rep. 12, 276–285 (2012).

    Article  PubMed  Google Scholar 

  85. Chen, J. et al. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiat. Oncol. 6, 128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Levin, V. A. et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 79, 1487–1495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kerklaan, J. P. et al. SMART syndrome: a late reversible complication after radiation therapy for brain tumours. J. Neurol. 258, 1098–1104 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Farid, K. et al. Normal cerebrovascular reactivity in stroke-like migraine attacks after radiation therapy syndrome. Clin. Nucl. Med. 35, 583–585 (2010).

    Article  PubMed  Google Scholar 

  89. Sadetzki, S. et al. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat. Res. 163, 424–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Balasubramaniam, A. et al. Glioblastoma multiforme after stereotactic radiotherapy for acoustic neuroma: case report and review of the literature. Neuro Oncol. 9, 447–453 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sheehan, J., Yen, C. P. & Steiner, L. Gamma knife surgery-induced meningioma. Report of two cases and review of the literature. J. Neurosurg. 105, 325–329 (2006).

    Article  PubMed  Google Scholar 

  92. Taieb, S., Trillet-Lenoir, V., Rambaud, L., Descos, L. & Freyer, G. Lhermitte sign and urinary retention: atypical presentation of oxaliplatin neurotoxicity in four patients. Cancer 94, 2434–2440 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Calabro, F. & Jinkins, J. R. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur. Radiol. 10, 1079–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Glantz, M. J. et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44, 2020–2027 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Liao, B., Shroff, S., Kamiya-Matsuoka, C. & Tummala, S. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro Oncol. 16, 589–593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bowen, B. C., Verma, A., Brandon, A. H. & Fiedler, J. A. Radiation-induced brachial plexopathy: MR and clinical findings. AJNR Am. J. Neuroradiol. 17, 1932–1936 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kori, S. H., Foley, K. M. & Posner, J. B. Brachial plexus lesions in patients with cancer: 100 cases. Neurology 31, 45–50 (1981).

    Article  CAS  PubMed  Google Scholar 

  98. Powell, S., Cooke, J. & Parsons, C. Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother. Oncol. 18, 213–220 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Esteban, A. & Traba, A. Fasciculation-myokymic activity and prolonged nerve conduction block. A physiopathological relationship in radiation-induced brachial plexopathy. Electroencephalogr. Clin. Neurophysiol. 89, 382–391 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Johansson, S. Radiation induced brachial plexopathies. Acta Oncol. 45, 253–257 (2006).

    Article  PubMed  Google Scholar 

  101. Cavaletti, G. & Zanna, C. Current status and future prospects for the treatment of chemotherapy-induced peripheral neurotoxicity. Eur. J. Cancer 38, 1832–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Stubblefield, M. D. et al. NCCN task force report: management of neuropathy in cancer. J. Natl Compr. Canc. Netw. 7 (Suppl. 5), S1–S26 (2009).

    Article  PubMed  Google Scholar 

  103. Cavaletti, G. Peripheral neurotoxicity of platinum-based chemotherapy. Nat. Rev. Cancer 8, http://dx.doi.org/10.1038/nrc2167-c1 (2008).

    Article  CAS  Google Scholar 

  104. Cavaletti, G., Alberti, P., Frigeni, B., Piatti, M. & Susani, E. Chemotherapy-induced neuropathy. Curr. Treat. Options Neurol. 13, 180–190 (2011).

    Article  PubMed  Google Scholar 

  105. Lee, J. J. & Swain, S. M. Peripheral neuropathy induced by microtubule-stabilizing agents. J. Clin. Oncol. 24, 1633–1642 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Park, S. B. et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63, 419–437 (2013).

    Article  PubMed  Google Scholar 

  107. Walsh, T. J., Clark, A. W., Parhad, I. M. & Green, W. R. Neurotoxic effects of cisplatin therapy. Arch. Neurol. 39, 719–720 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. Toyooka, K. & Fujimura, H. Iatrogenic neuropathies. Curr. Opin. Neurol. 22, 475–479 (2009).

    Article  PubMed  Google Scholar 

  109. Miltenburg, N. C. & Boogerd, W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat. Rev. 40, 872–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Mayer, E. L. Early and late long-term effects of adjuvant chemotherapy. Am. Soc. Clin. Oncol. Educ. Book 2013, 9–14 (2013).

    Article  Google Scholar 

  111. Hansen, S. W. Autonomic neuropathy after treatment with cisplatin, vinblastine, and bleomycin for germ cell cancer. BMJ 300, 511–512 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cassier, P. A. et al. Gemcitabine and oxaliplatin combination chemotherapy for metastatic well-differentiated neuroendocrine carcinomas: a single-center experience. Cancer 115, 3392–3399 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Cavaletti, G. et al. Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur. J. Cancer 46, 479–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Cavaletti, G. & Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol. 6, 657–666 (2010).

    Article  PubMed  Google Scholar 

  115. Chen, W. W., Wang, F. & Xu, R. H. Platinum-based versus non-platinum-based chemotherapy as first line treatment of inoperable, advanced gastric adenocarcinoma: a meta-analysis. PLoS ONE 8, e68974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dormann, A. J., Grunewald, T., Wigginghaus, B. & Huchzermeyer, H. Gemcitabine-associated autonomic neuropathy. Lancet 351, 644 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Dropcho, E. J. Neurotoxicity of cancer chemotherapy. Semin. Neurol. 30, 273–286 (2010).

    Article  PubMed  Google Scholar 

  118. Gaurav, K., Goel, R. K., Shukla, M. & Pandey, M. Glutamine: a novel approach to chemotherapy-induced toxicity. Indian J. Med. Paediatr. Oncol. 33, 13–20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Giglio, P. & Gilbert, M. R. Neurologic complications of cancer and its treatment. Curr. Oncol. Rep. 12, 50–59 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Beijers, A. J., Jongen, J. L. & Vreugdenhil, G. Chemotherapy-induced neurotoxicity: the value of neuroprotective strategies. Neth. J. Med. 70, 18–25 (2012).

    CAS  PubMed  Google Scholar 

  121. Loprinzi, C. L. et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J. Clin. Oncol. 32, 997–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Hershman, D. L. et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 32, 1941–1967 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Amara, S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann. Pharmacother. 42, 1481–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Diouf, B. et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313, 815–823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ohsawa, M. et al. Gabapentin prevents oxaliplatin-induced mechanical hyperalgesia in mice. J. Pharmacol. Sci. 125, 292–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Park, H. J. Chemotherapy induced peripheral neuropathic pain. Korean J. Anesthesiol. 67, 4–7 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ziegler, D. & Fonseca, V. From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J. Diabetes Complications 29, 146–156 (2015).

    Article  PubMed  Google Scholar 

  128. Badros, A. et al. Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Richardson, P. G. et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J. Clin. Oncol. 24, 3113–3120 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Seretny, M., Colvin, L. & Fallon, M. Therapy for chemotherapy-induced peripheral neuropathy. JAMA 310, 537–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Martin, T. et al. Baseline peripheral neuropathy does not impact the efficacy and tolerability of the novel proteasome inhibitor carfilzomib (CFZ): results of a subset analysis of a phase 2 trial in patients with relapsed and refractory multiple myeloma (R/R MM) [abstract]. ASH Annual Meeting Abstracts 116, a3031 (2010).

  132. Mileshkin, L. et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J. Clin. Oncol. 24, 4507–4514 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Mazumder, A. & Jagannath, S. Thalidomide and lenalidomide in multiple myeloma. Best Pract. Res. Clin. Haematol. 19, 769–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Begna, K. H. et al. A phase-2 trial of low-dose pomalidomide in myelofibrosis. Leukemia 25, 301–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Kreisl, T. N. Neurologic complications of antitumor antibody therapies. Curr. Neurol. Neurosci. Rep. 8, 259–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 363, 1812–1821 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Soffietti, R., Trevisan, E. & Ruda, R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb. Clin. Neurol. 121, 1199–1218 (2014).

    Article  PubMed  Google Scholar 

  138. Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Puduvalli, V. K., Sella, A., Austin, S. G. & Forman, A. D. Carpal tunnel syndrome associated with interleukin-2 therapy. Cancer 77, 1189–1192 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Liao, B., Shroff, S., Kamiya-Matsuoka, C. & Tummala, S. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro. Oncol. 16, 589–593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bot, I., Blank, C. U., Boogerd, W. & Brandsma, D. Neurological immune-related adverse events of ipilimumab. Pract. Neurol. 13, 278–280 (2013).

    Article  PubMed  Google Scholar 

  142. Bora, I. et al. Myasthenia gravis following IFN-α-2a treatment. Eur. Neurol. 38, 68 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Srinivasan, J., Wu, C. J. & Amato, A. A. Inflammatory myopathy associated with imatinib mesylate therapy. J. Clin. Neuromuscul. Dis. 5, 119–121 (2004).

    Article  PubMed  Google Scholar 

  144. Pentsova, E. et al. Gemcitabine induced myositis in patients with pancreatic cancer: case reports and topic review. J. Neurooncol. 106, 15–21 (2012).

    Article  PubMed  Google Scholar 

  145. Chen, X., Schwartz, G. K., DeAngelis, L. M., Kaley, T. & Carvajal, R. D. Dropped head syndrome: report of three cases during treatment with a MEK inhibitor. Neurology 79, 1929–1931 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rowin, J., Cheng, G., Lewis, S. L. & Meriggioli, M. N. Late appearance of dropped head syndrome after radiotherapy for Hodgkin's disease. Muscle Nerve 34, 666–669 (2006).

    Article  PubMed  Google Scholar 

  147. Bowen, J., Gregory, R., Squier, M. & Donaghy, M. The post-irradiation lower motor neuron syndrome neuronopathy or radiculopathy? Brain 119, 1429–1439 (1996).

    Article  PubMed  Google Scholar 

  148. Travis, L. B. et al. Chemotherapy-induced peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics. J. Natl Cancer Inst. 106, dju044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Argyriou, A. A. et al. A randomized controlled trial evaluating the efficacy and safety of vitamin E supplementation for protection against cisplatin-induced peripheral neuropathy: final results. Support. Care Cancer 14, 1134–1140 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for article, wrote the manuscript and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Lisa M. DeAngelis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, J., DeAngelis, L. Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Rev Clin Oncol 13, 92–105 (2016). https://doi.org/10.1038/nrclinonc.2015.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.152

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer